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Abstract

This paper describes progress in several areas related to three-dimensional vortex methods and their application to mul-
tiphysics problems. The first is the solution of a generic scalar transport equation by advecting and diffusing the scalar
gradient along a particle trajectory and onto a mesh, respectively, and recovering the scalar values using a Biot–Savart-
like summation. The second is the accurate, high-resolution calculation of the velocity gradient using a fast treecode, which
avoids using kinematic relations between the evolution of the gradients and the distortion of the flow map. The same tree
structure is used to compute all the variables of interest and those required during the integration of the governing equa-
tions. Next, we apply our modified interpolation kernel algorithm for treating diffusion and remeshing to maintain long
time accuracy. The coupling between vorticity transport and that of a dynamic scalar, in this case the temperature or den-
sity in a gravitational field, is manifested by the generation of vorticity. We demonstrate the performance of the multiphys-
ics algorithm by solving a number of buoyant flow problems.
� 2008 Published by Elsevier Inc.
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1. Introduction

Lagrangian vortex methods [1,2] are tools for computing complex unsteady fluid flows at high Reynolds
numbers. While they have other advantages, such as the relaxation of the CFL condition and the suppression
of numerical diffusion, one of their most interesting features is the fact that they are based on the discretization
of vorticity. Especially in unconfined and semi-confined flows, a typical computational domain must extend to
a size that incorporates regions where the primary variables, i.e., velocity and pressure, may deviate very
slightly from their uniform distribution. This can result in an unmanageable computational effort in 3D or
would require complex non-uniform grids that cluster around zones of high gradients and transition to coarser
meshes closer to uniform zones. Vorticity, on the other hand, is derived from the curl of the velocity field, and
can be described by computational elements contained in a smaller fraction of the total volume of the flow
field. As the result, the computational elements are utilized more efficiently. Lagrangian transport of vorticity
guarantees that its evolution in space and time is well resolved.
0021-9991/$ - see front matter � 2008 Published by Elsevier Inc.

doi:10.1016/j.jcp.2008.03.036

* Corresponding author. Tel.: +1 617 253 2295; fax: +1 617 253 5981.
E-mail address: ghoniem@mit.edu (A.F. Ghoniem).

mailto:ghoniem@mit.edu


9064 F. Schlegel et al. / Journal of Computational Physics 227 (2008) 9063–9090
The extension of this idea to general transport problems has been suggested and implemented in several
contexts. In this methodology, when solving for the transport of a scalar variable, one discretizes the gradients
of the scalar field, instead of the scalar field itself. The evolution of the scalar field is hence determined by solv-
ing the corresponding transport equation for its gradients. The advantage of this approach is identical to that
described in the previous paragraph for vortex methods. Since the gradients can be described by computa-
tional elements confined to a small fraction of the total volume of the domain, one can utilize the discrete ele-
ments more efficiently.

These ideas were first described for 1D problem in Ghoniem and Oppeneim for modelling diffusion pro-
cesses [3]. Further developments were suggested and implemented more generically in Ghoniem and Sherman
[4]. Anderson [5] extended the concept of gradient transport to convection in 2D, and to buoyant flows. A
conservative formulation of that construction was suggested by Ghoniem et al. [6], called the transport ele-
ment method, and used it for the simulation of mixing in shear flows. Krishnan and Ghoniem [7] extended
the transport element method to nearly inviscid buoyant flows in 2D. They studied a two-dimensional Ray-
leigh–Taylor flow evolving under the action of gravity across a large temperature gradient, i.e., without the
Boussinesq approximation. A reacting flow version of transport element methods was also proposed by Sote-
riou and Ghoniem [8,9] to investigate the dynamics of two-dimensional reacting shear layers. Soteriou et al.
[10] applied transport element methods to planar buoyant plumes simulations.

Three-dimensional transport element method was proposed by Knio and Ghoniem, and was used to sim-
ulate the evolution of a periodic shear layer [11,12]. The construction of this method was, however, based on a
rather complicated internal coordinate system inside each computational element, which made the implemen-
tation difficult. Essentially, the construction was based on a kinematic relation between the evolution of the
local gradients and that of the distortion of the material elements. To implement this kinematic relation,
one needs to evolve the underlying flow map, that is, both the location of the field particles and their
connectivity.

In this paper, we resurrect the basic concepts of the transport element methods in the context of three-
dimensional multi-physics problems, where the vorticity field and the scalar field are coupled by baroclinicity,
but simplify its implementation using a number of new ideas. The scheme is equipped with a multi-purpose
adaptive treecode, which enables fast and accurate evaluation of various quantities required for the simula-
tion, i.e., velocity, velocity gradients, and scalar distribution. Accurate and fast evaluation of velocity gradi-
ents enables us to solve the scalar gradient evolution without complex internal coordinate systems, with
negligible loss of conservation properties. The capability of the scheme is demonstrated in various three-
dimensional flows driven by buoyancy.

This paper is organized as follows. The governing equations are given in Section 2 and the numerical algo-
rithm is presented in Section 3. Section 4 is dedicated to the simulation of a vortex ring. Buoyancy-driven flows
are studied in Section 5, and conclusions are given in Section 6. Finally, our multi-purpose adaptive treecode is
presented in detail in Appendix.

2. Governing equations

To demonstrate the capability of our transport element method, we study buoyancy-driven flows in R3.
Using the Boussinesq approximation, the Navier–Stokes equation is given as follows:
ou

ot
þ u � ru ¼ mDu� 1

q
rp � grbðT � T1Þ; ð1Þ

r � u ¼ 0; ð2Þ
where u is velocity, p is pressure, b is the volumetric thermal expansion coefficient of the fluid, and gr is the
gravitational acceleration. T1 is the temperature of the environment, $ and D are the gradient and Laplacian
operators. The temperature field,, is governed by the following advection–diffusion equation:
oT
ot
þ u � rT ¼ aDT : ð3Þ
Here, v is the kinematic viscosity, and a is the thermal diffusivity.
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We normalize Eqs. (1)–(3) by choosing a reference length L, which can be defined by a characteristic geomet-
ric length scale of the problem. The corresponding reference flow speed is given by U ¼

ffiffiffiffiffiffiffi
grL
p

, where g2
r ¼ gr � gr.

We also choose a reference temperature, T0, which is different from T1. Then, with the following normalization:
~x ¼ x=L; ~u ¼ u=U ; ~t ¼ t=ðL=UÞ; ~h ¼ ðT � T1Þ � ðT 0 � T1Þ; ~p ¼ p=ðqU 2Þ, and ~gr ¼ gr=gr, we obtain
o~u

o~t
þ ~u � ~r~u ¼ 1

Re
eD~u� ~r~p � Gr

Re2
~gr

~h; ð4Þ

~r � ~u ¼ 0; ð5Þ
o~h
o~t
þ ~u � ~r~h ¼ 1

PrRe
eD~h: ð6Þ
Naturally, ~r ¼ 1
Lr and ~D ¼ 1

L2 D. The system is governed by three dimensionless parameters, i.e., the Reynolds
number, Re = UL/v, the Prandtl number, Pr = v/a, and the Grashof number, Gr = gr b(T0 � T1)L3/v2. In the
following, all the variables are understood as being normalized in this form, and the tilde over each dimen-
sionless variable is omitted.

Taking the curl of Eq. (4), we obtain the vorticity–velocity formulation for buoyant flows:
ox

ot
þ u � rx ¼ x � ruþ 1

Re
Dxþ Gr

Re2
gr �rh; ð7Þ
where x = $ � u, and Gr
Re2 gr �rh is the baroclinic source term for vorticity generation.

Using the Helmholtz decomposition, the velocity field can be separated as follows:
u ¼ ux þ up; ð8Þ

where ux is the vortical velocity field, and up is the potential velocity field. The potential velocity is added to
satisfy the normal velocity boundary conditions. In R3, where no apparent boundary exists, up is set to 0, and
u = ux. On the other hand, given a distribution of vorticity within a domain D, the vortical velocity in R3 is
determined using the Biot–Savart law:
uðx; tÞ ¼ uxðx; tÞ ¼ �
1

4p

Z
D

ðx� x0Þ � xðx0; tÞ
jx� x0j3

dx0: ð9Þ
The set of equations, Eqs. (6), (7) and (9), provides a complete description of the flow.

3. Numerical algorithm

Our approach uses Lagrangian particles as computational elements. The vorticity field is discretized into
Lagrangian computational elements, or particles, with weights Wi(t), and locations vi(t) such that
xðx; tÞ �
XNx

i

WiðtÞfdðx� viðtÞÞ; ð10Þ
where Nx is the number of vortex elements. The core function fd(r) is obtained from a reference function f(r)
by fd(r) = d�3f(jrj/d). In this work, the reference function f is the low-order algebraic core function [16]:
f ðrÞ ¼ 3

4p
1

ð1þ r2Þ5=2
: ð11Þ
To simulate buoyant flows, we need to additionally solve the transport equation of energy or temperature, Eq.
(6). Since the baroclinic source term in Eq. (7) depends on the gradient of h, instead of using the scalar values
as weights and computing their gradients locally, we use the scalar gradients as the weights of the correspond-
ing computational elements. The advantage of using the gradients as weights is that the support of the gradient
is smaller than that of the scalar itself, and hence the computational elements can be distributed over a smaller
fraction of the domain. For instance, a hot sphere can be represented by discretizing the spherical shell
between the hot interior and the cold exterior, while no elements are used in the temperature domains inside
or out.
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Such a method is generally referred as a transport element scheme. In the context of the current problem,
we discretize the gradient of h as follows:
1 Sin
instead
differe
elemen
noted
gðxÞ ¼ rhðxÞ �
XNg

i

GiðtÞfdðx� fiðtÞÞ; ð12Þ
where Ng is the number of transport elements. By taking gradient of Eq. (6), we get the governing equation for
g,
og

ot
þ u � rg ¼ �ðruÞt � gþ 1

PrRe
Dg ð13Þ
The solution of the equations of motion is expressed in terms of the instantaneous locations, i.e., vi and fi, and
weights, i.e., Wi and Gi, of these elements.

The numerical solution of Eqs. (7) and (13) is obtained through an operator splitting. The computational
time step is split into three substeps, i.e., convection substep, generation substep, and diffusion substep. During
each substep, we solve the following equations:
Convection substep:
Dx

Dt
¼ ox

ot
þ u � rx ¼ x � ru; ð14Þ

Dg

Dt
¼ og

ot
þ u � rg ¼ �ðruÞt � g; ð15Þ

Generation substep:
ox

ot
¼ Gr

Re2
gr �rh; ð16Þ

Diffusion substep:
ox

ot
¼ 1

Re
Dx; ð17Þ

og

ot
¼ 1

PrRe
Dg: ð18Þ
During the convection substep, the solution of Eqs. (14) and (15) is obtained by integrating the following
equations:
dvi

dt
¼ uðvi; tÞ; ð19Þ

dfi

dt
¼ uðfi; tÞ; ð20Þ

dWi

dt
¼WiðtÞ � ruðvi; tÞ; ð21Þ

dGi

dt
¼ �ðruðfi; tÞÞ

t �GiðtÞ: ð22Þ
The integration of these equations is performed using a second-order predictor–corrector scheme.1

During the generation substep, Eq. (16) for the baroclinic generation of vorticity is integrated using a first-
order scheme. We need to introduce additional vorticity, where non-trivial baroclinicity exists. This is achieved
by generating one new vortex element at the location of each transport element, using the following expression
for each ith transport element:
Wg
i ¼

Gr

Re2
gr �GiðtÞ

� �
Dt for 1 6 i 6 Ng: ð23Þ
ce Eqs. (19) and (20) have an identical form, it is possible to use one single set of computational elements representing both x and g,
of two different sets of computational elements. In the case where the support of x and that of g do not overlap much, using two

nt sets is memory-efficient. On the other hand, if there exists much overlap, it is better to use one single set of computational
ts. Though we have employed two different sets of elements to test the capability of our transport element method here, it should be
that the latter is usually the case in practical situations, where baroclinic interaction is dominant.
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The vorticity field is updated by adding these new vortex elements to the existing vortex elements,
Fig. 1.
neighb
the pa
xðxÞ ¼
XNx

i¼1

Wifdðx� viÞ þ
XNg

i¼1

Wg
i fdðx� fiÞ: ð24Þ
After the update is finished, Nx is augmented by Ng.
During the diffusion substep, Eqs. (17) and (18) are solved by using a modified interpolation kernel [13].

The existing field is interpolated over a new set of elements, whose location is selected to satisfy certain
requirements. Through the interpolation process, the vorticity field is updated such that the strength of the
new elements are
Wjðt þ DtÞ ¼
X

i

f x
ij WiðtÞ; ð25Þ
where f x
ij is the redistribution fraction from the ith vortex element to the jth grid point, which in the current

implementation is described by a uniform Cartesian grid with the grid size Dx as shown in Fig. 1. f x
ij is ob-

tained by using the interpolation kernel K3:
f x
ij ¼ K3

xj � xi

Dx
; cx

� �
K3

yj � yi

Dx
; cx

� �
K3

zj � zi

Dx
; cx

� �
; ð26Þ
where
K3ðn; cÞ ¼
1� 2c2 þ jnjð3c2 � 1=2Þ � n2 þ jnj2=2; jnj < 1;

ð2� jnjÞ 1
6
ð3� jnjÞð1� jnjÞ þ c2

� �
; 1 6 jnj < 2;

0; 2 6 jnj:

8><>: ð27Þ
Here, cx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re�1Dt
p

=Dx, which represents the ratio between the diffusion length scale and Dx. As shown in
[11], in this modified interpolation kernel, during each interpolation step the second-order moments are in-
creased by the amount required to simulate diffusion. In classical interpolation, the kernel preserves these sec-
ond-order moments.

In a similar way, we update the gradient field,
Gjðt þ DtÞ ¼
X

i

f g
ij GiðtÞ; ð28Þ
where f g
ij is the redistribution fraction from the ith transport element to the jth grid point. f g

ij is obtained by

using Eq. (26), but with cg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr�1Re�1Dt
p

=Dx in place of cx.
At the end of the interpolation, time is advanced to t + Dt, and that completes the entire step. By the end of

the time step, the fields are again expressed by Eqs. (10) and (12), where i runs over all the grid points with
Schematic illustration of a diffusion substep. Circles represent particles. The strength of each particle is interpolated onto its nearest
oring grid points, denoted by ‘x’, which occupy a rectangular domain around the particle (left). After finishing interpolation for all
rticles, each grid point containing non-trivial strength is converted into a particle (right).



9068 F. Schlegel et al. / Journal of Computational Physics 227 (2008) 9063–9090
non-trivial values of Wi and/or Gi. Note that the problem of Lagrangian distortion is resolved within the dif-
fusion substep, since the new particles are uniformly distributed at the end of the substep.

During the convection substep, we need to evaluate u and Du at the location of each computational element.
A naı̈ve implementation of this process leads to an expensive operation, whose cost scales as O(N2). The recov-
ery of h from g, which is necessary during post-processing, also requires similar set of operations. To reduce
the computational cost of these tasks, we use a multi-purpose adaptive treecode, which is described in Appen-
dix A.

Also we note that, for isothermal flows, Eq. (6) is redundant, and the source term for vorticity generation in
Eq. (7) drops out. In this hydrodynamic limit, the computational algorithm reduces to the standard vortex
element scheme, where only convection and diffusion, i.e., Eqs. (14) and (17), of vorticity is implemented.
In the following sections, we first describe some results at this hydrodynamic limit, and then present the results
of buoyant flow simulations.

4. Evolution of a vortex ring

In the following, we examine the accuracy and convergence of our algorithm. We first apply the algorithm
at the hydrodynamic limit to perform the simulation of a vortex ring. The evolution of a viscous vortex ring
was studied with an axisymmetric spectral calculation by Stanaway et al. [14], and the result was later repro-
duced in a vortex calculation by Wee and Ghoniem [13]. The initial vorticity distribution of the ring core is
given by
x/ ¼
K
p

C
a2

exp �K
R2

a2
þ r2

a2
� 2Rr

a2
sin h

� �	 

ð29Þffiffiffiffiffiffiffiffiffip
with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; tan h ¼ x2þy2

y and K ¼ ð2:24182Þ2
4

. The core radius is chosen to be a/R = 0.35. The initial
ring radius, R(0), and its initial circulation, C(0), are unity. Its evolution is computed for a Reynolds number
Re � C/m = 500.

The numerical parameters are chosen as follows: the time step for the highest resolution simulation is
Dt = 0.15 and the grid size for the diffusion substep is Dx = 0.025. Because of diffusion, the vorticity support
expands and the number of particles grows in time. To control the number of particles, particles with its
strength below a cutoff value are deleted after each diffusion substep. The cutoff value for deletion is chosen
to be jxdVjdel = 10�11.

The simulation is initialized by computing the vorticity distribution on a Cartesian grid with a grid size
Dx = 0.025. The number of vortex elements at the beginning of the simulation is around 1,900,000.

The results are reported in terms of the following dimensionless variables. The dimensionless time is given
by
�t ¼ v2

I0=q
; ð30Þ
where I0 represents the linear impulse of the vortex ring. The dimensionless speed of the vortex ring centroid is
defined by
U ¼ U c

ðI0=qÞ
1
2

v
3
2

; ð31Þ
where Uc is the ring centroid velocity measured in the computational units.
We present the vorticity contours at �t ¼ 6:75� 10�5, 7.48 � 10�5, 8.21 � 10�5, 9.06 � 10�5, 10.03 � 10�5

and 11.85 � 10�5. The vorticity contours shown in Fig. 2 match well those previously reported [13,14]. Even
the subtle tail structures at �t ¼ 10:03� 10�5 are well captured.

The predicted location of the vortex ring centroid velocity shown in Fig. 3 also compares well with the
results of previous calculations. We note that the current calculation which was performed using the full
three-dimensional representation of the ring structure matches more closely the two-dimensional spectral
calculation results obtained by Stanaway et al. [14] than those reported in [13]. The ring maintains its two-



Fig. 2. Vorticity contours of the evolution of a single vortex ring for the times �t ¼ 6:75� 10�5, 7.48 � 10�5, 8.21 � 10�5, 9.06 � 10�5,
10.03 � 10�5 and 11.85 � 10�5. The vorticity difference between two solid lines is ten times higher as the vorticity difference between two
dashed lines.
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dimensionality during the simulation and hence it is possible to compare our three-dimensional results with
the two-dimensional results. The results of Wee and Ghoniem [13] were obtained using a 20� section to reduce
the number of computational elements (see also Ref. [15]). The current results were obtained for the full 360�
ring representation. The number of vortex elements at the end of the simulation is around 3,500,000.

The use of our more efficient vortex-particle algorithm, instead of the vortex filament algorithm in [13],
allows us to perform simulations with a smaller grid size. As a consequence, we have better accuracy and
can accommodate up to 5 millions particles even with a serial implementation.

5. Buoyancy-driven flows

As mentioned earlier, the development of a fast treecode to compute the velocity and its gradient enable us
to resurrect the idea of the transport element methods (TEM), in which the gradients of primitive variables are
used as weights for computational particles, instead of the primitive variables. In the following, we demon-
strate the capability of our combined strategy, i.e., vortex element/transport element scheme, by computing
buoyancy-driven flows.

We consider the evolution of thermals. Single thermal spheres have been intensively studied and their
behavior is now well known. An important theoretical and experimental work has been done by Scorer



Fig. 3. The vortex ring velocity for the highest resolution fully 3-D simulation (solid curve) using the current vortex particle algorithm.
The results obtained in 2-D by Stanaway et al. [14] are plotted in dashed lines, and those obtained by Wee and Ghoniem [13] for a 20�
section simulation performed in parallel are plotted in solid lines.
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[17,18], Wang [19], Lin [20], Turner [21,22], and Escudier and Maxworthy [23]. Numerical simulations on ther-
mals have been initially performed by Andersdon [5] and Marcus and Bell [24] in 2D. More generally, two-
dimensional studies of the Rayleigh-Taylor instability were conducted by Baker et al. [25], Kerr [26], Tryggva-
son [27] and Zufiria [28,29], using vortex methods. Three-dimensional simulations of buoyant bubbles were
realized by Brecht and Ferrante [30,31] in the inviscid limit using a vortex-in-cell code. Walther and Koum-
outsakos [32] extended the particle methods in 3D to the viscous case.

We first present the evolution of a single thermal sphere, and then nonlinear interactions between two ther-
mal spheres will be shown.

5.1. Evolution of a thermal sphere

A sphere of hot air is placed in relatively cold ambient atmosphere, such that its center is initially at the
origin. The radius of the sphere is used as the reference length scale for normalization, i.e., R = 1. Dynami-
cally, the difference in temperature between the hot and cold air drives the sphere against gravity through
buoyancy. This phenomenon can be kinematically described by the baroclinic generation of vorticity around
the surface of the sphere.

The initial temperature profile is defined by the error function, i.e., hðxÞ ¼ 1
2
erfc jxj�R

dT

� �
, where dT is the

thickness of the temperature transition layer.The gradient profile is given by a Gaussian distribution,

rh ¼ � 1ffiffi
p
p

dT
exp � jxj�R

dT

� �2
	 


er, where er represents the radial unit vector. The profiles are shown in Fig. 4.

As described above, using gradients as weights for the particles, we only need to cover the support of the gra-
dient. Gravity is pointed in the negative y-direction.

The parameters are chosen as follows:
Pr ¼ v=a ¼ 1; ð32Þ

Re ¼ U �R
v
¼ R

ffiffiffiffiffiffi
gR
p

v
¼ 1000; ð33Þ

Gr ¼ q1grR
3Dq

l2
� grR

3bDT
v2

¼ 5� 105; ð34Þ

Gr=Re2 ¼ 1

2
: ð35Þ



Fig. 4. View on a radial cut, of the value of the temperature distribution on the left (erfc), and the value of the temperature gradient
distribution on the right (Gaussian), at t = 0 s.
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The thickness of the temperature transition region is given by dT = 1/30, i.e., the temperature difference is al-
lowed to spread over 1/30 of the initial radius of the sphere before we start the simulations. The grid size for
diffusion Dx = 0.05 is and the time step size is Dt = 0.125. Fig. 5 shows the evolution of both the temperature
and the vorticity on the left hand side and the right hand side respectively. The temperature is recovered from
the gradient elements, using the method described in Appendix for fast summation over gradient elements:
Fig. 5. Evolution of the buoyant sphere, 2D-cut (3D simulation); temperature contours on the top and vorticity contours on the bottom,
for the times �t ¼ 0:125, 2.4, 4.8 and 7.2. The two first contour values are 0.1 and 0.33, then their values vary linearly with an increment of
0.33.



Fig. 7.
and 19
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hðxÞ ¼ �
X

j

Kdðx; fjÞ �Gj ð36Þ
As expected, the sphere is driven against gravity through buoyancy. The vorticity generated on both sides of
the sphere rolls up forming a complex ring structure.

A convergence study is performed by repeating the same simulations for different grid sizes, Dx = 0.025,
0.035, 0.05 and 0.1. The corresponding time step size is determined by cx = cg = 2�1/2, which represents the
ratio between the diffusion length scale and the grid size. The temperature is computed on a two-dimensional
Cartesian grid, Dx = 0.025, by performing our fast summation over all the computational elements. The tem-
perature centroid is defined as
yT ¼
R

hydVR
hdV

: ð37Þ
Fig. 6. Position of the temperature center of the buoyant sphere for different resolutions.

Temperature isosurface, h = 0.3, of the evolution in time of two thermal spheres of initial radius R = 1, for �t ¼ 0, 6.5, 10.5, 14.5
.



Fig. 8. Vorticity isosurface, jxj = 1.2, of the evolution in time of two thermal spheres of initial radius R = 1, for �t ¼ 1:3, 3.3, 6.9, 8.9, 11.9
and 17.1.
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The position of the buoyant sphere temperature centroid is plotted in Fig. 6 for different resolutions. The error
is defined as
Fig. 9.
kErrorkL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N 2

XNDt

t¼0

ðyTðt;DxÞ � yTðt;Dx ¼ 0:025ÞÞ2
vuut ; ð38Þ
where N is the number of time steps. The highest resolution simulation, was compared with the three other
simulations obtained using coarser grids. The order of convergence is 1.45. Note that we use a second-order
scheme for the convection step, while the diffusion and the baroclinic generation of vorticity are first-order. In
all cases the flows remains essentially two-dimensional.
Temperature contours of the evolution in time of two thermal spheres of initial radius R = 1, for �t ¼ 0, 3.3, 6.9, 8.9, 11.9 and 15.1.



Fig. 10. Vorticity contours of the evolution in time of two thermal spheres of initial radius R = 1, for �t ¼ 0:125, 3.3, 6.9, 8.9, 11.9 and 15.1.
The three first contour values are 0.1, 0.25 and 0.5, then their values vary linearly with an increment of 0.5.
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5.2. Interactions of two thermal spheres

5.2.1. Side-by-side interaction

Fig. 7 shows another sample calculation used to demonstrate the three-dimensional capabilities of the code:
two hot-air spheres are evolving under a gravity field in the z-direction. In this case the two spheres are initially
placed side-by-side. We again use the same parameters that we used in the single buoyant sphere simulation
but allow the spatial grid size to grow in time such that Dx = 0.035 for t 2 [0,3.75], Dx = 0.05 for
t 2 [3.75, 12.37] and Dx = 0.07 for t > 12.37. The corresponding time step size is determined by
cx = cg = 2�1/2. Figs. 7 and 8 show 3D plots of the temperature contour, h = 0.3, and the vorticity isosurface,
jxj = 1.2. These figures show that, due to diffusion, the distinction between the two spheres is lost and a con-
tinuous complex structure is formed a short distance into their vertical rise. The distortion of the temperature
Fig. 11. Temperature contours of the evolution in time of two thermal spheres in the y–z plane at x = 0, for �t ¼ 0, 3.3, 6.9, 8.9, 11.9 and
15.1.
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isosurfaces because of the mutual interactions between the two sphere leads to the formation of a complex
tangle of vorticity structures. The results are plotted in two-dimensional cuts across the vertical plane of
the initial centers of the two spheres in Figs. 9 and 10 respectively, to show the strong distortion of the tem-
perature contours, followed by the inter-diffusion between the neighbors spheres and the corresponding vor-
ticity field in that plane.

The vortical structures formed due to the interaction between generation, convection and diffusion are well
illustrated in Fig. 8. Here, we observed two distinct rings whose individual structures resemble those observed
in the single sphere simulations only at the very early stages. As these rings evolve, a mutual distortion of the
overall structure is observed starting at t = 1.3 in Fig. 8. This distortion is most pronounced in the contortion
of the initial two rings upwards, where they intersect close to the anti-symmetry plane, and the formation of
two new crescent shaped structures between these rings. Although each hot sphere leads to the formation of a
single vortex ring, as seen before, and the two spheres initially form two side-by-side vortex rings, the similar-
ity ends here, as explained next.

It is interesting to notice that the underlying physics here is much different from what is observed in the case
of the interaction of two vortex rings. The general behavior of two colliding side-by-side vortex rings is well
known and can be seen in [13]. In the case of the side-by-side ring propagation, the following features are
observed. At the early stages, before the inner vorticity cores inter-diffuse and values with opposite signs anni-
hilate each other, or before the inner cores connect, the downward motion near the anti-symmetry plane
pushes the inner cores downward with respect to the outer cores. At the later stages, however, after the
two inner cores connect and their vorticity dissipates by inter-diffusion, the strength of the inner cores becomes
weaker than those associated with the outer cores. The motion is now reversed and the inner cores move
upwards with respect to those of the outer cores.

In the case of the side-by-side hot spheres, the two rings that form early in the evolution are contorted
upwards near the anti-symmetry plane from the very early stages, as seen at t = 3.3. In this case, the
Fig. 12. Velocity field induced by the vortical structures in the yz-plane at x = 0 at time �t ¼ 8:9. The contours correspond to the vorticity
norm, their values vary linearly from 0.5 to 2.5, with an increment of 0.5.
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reconnection between the two hot spheres reduces the vorticity generation rate in the inner cores below that at
the outer cores. This is shown by the empty zone at t = 1.3. Moreover, the diffusion of the opposite signs vor-
ticity generated within the inner cores further weakens their impact with respect to that of outer cores. The
formation of relatively uniform temperature zones near the anti-symmetry plane is shown in Fig. 9 as the
two spheres connect/diffuse. Meanwhile, higher temperature zones persist at the outer cores even at the later
stages. The impact of this distortion on the vorticity field is seen in Fig. 10, where from the early stages of the
simulation, the outer vorticity cores are larger and the inner cores are driven upwards from t P 0.
Fig. 13. Evolution of two thermal spheres; temperature isosurface, h = 0.3, for �t ¼ 0, 3.5, 7 and 10.5. The upper sphere with a radius of 1.5
centered at (0,0,3), and the lower one with a radius of 1 centered at (0.5,0,0). The two spheres are initially at the same temperature.
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Parallel to the formation and distortion of the two side-by-side rings as the two hot spheres rise, we observe
the formation of two crescent shaped vortical structures that ‘‘hang” below the two rings as they propagate
upwards. These two crescents form as the two sphere interconnect from below, as seen in Fig. 9 at t = 3.3.
The baroclinic generation associated with the bridge between the two initial spheres is consistent with the tem-
perature distribution within this bridge, as shown in Fig. 11. Note that the vorticity forms at the interface
between the hot fluid originally in the spheres and the cold fluid outside.

To quantify the vorticity within these crescent shaped structures and show their impact on the velocity field,
we plot their vorticity distribution and the total velocity on a y–z plane located half way between the original
two spheres in Fig. 12. The plot shows that these two structures contribute significantly to the upward motion
Fig. 14. Evolution of two thermal spheres; vorticity isosurface, jxj = 1.4, for �t ¼ 2:5, 5.5, 8.5 and 11.25.
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at the anti-symmetry plane. It is interesting to observe that, at the late times, the vorticity associated with the
original two rings decay, while that contained in these two crescents persist. This is confirmed by Fig. 8, at
t = 17.1.
Fig. 15. Evolution of two thermal spheres; temperature contours, for �t ¼ 0, 3.5, 7 and 10.5. The upper bubble with a radius of 1.5 centered
at (0,0,3), and the lower one with a radius of 1 centered at (0.5,0,0). The two bubbles are initially at the same temperature.



Fig. 16. Evolution of two thermal spheres; vorticity contours for �t ¼ 0, 3.5, 7 and 10.5. The two first contour values are 0.1 and 0.5, then
their values vary linearly with an increment of 0.5.
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Fig. 17. Position of the temperature center of the buoyant spheres for different resolutions.
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5.2.2. Two spheres with different sizes

Another calculation that demonstrates the three-dimensional capability of our method is that shown in
Figs. 13 and 14, where initially the upper sphere has a radius of 1.5 and the lower one has a radius of 1.
To manifest the three-dimensionality, the centers of the two spheres are shifted in the lateral direction with
respect to the vertical (gravity) direction. Hence, the upper sphere is centered at (0,0,3), and the lower one
at (0.5,0,0). We use the same numerical parameters that we used in the single buoyant sphere simulation.
The temperature isosurface, h = 0.3, and vorticity isosurface, jxj = 1.4, are plotted in 3D in Figs. 13 and
14 respectively. The temperature and vorticity contours are plotted in Figs. 15 and 16. The two spheres are
initially at the same temperature. Initially, the vorticity generated on the sides of both spheres roll up forming
a vortex ring, as it was the case for the buoyant sphere case. However, soon after the formation of the initial
vorticity, the two newly formed rings exhibit the traditional vortex ring leap frogging mechanism. The initial
eccentricity augments this motion.

The results show that the asymmetry introduced by the eccentricity persists, as manifested by the motion of
the smaller sphere towards the left while it passes through the larger sphere. The material in the smaller sphere
is drawn into a long thin structure by the stronger vortical structure formed by the larger sphere. Meanwhile,
as that structure ‘‘punches” through the larger sphere, it forces more of its fluid to move towards the left side.

A convergence study is performed by repeating the same simulations for different grid sizes, Dx = 0.035,
0.05, 0.07 and 0.1. The corresponding time step sizes are determined by cx = cg = 2�1/2. The temperature cen-
troid is defined in (37). The position of the buoyant spheres temperature center is plotted in Fig. 17. The error
in the temperature centroid is defined in (38). The order of convergence is found to be 1.45. It is similar to what
was found previously.

6. Conclusion

Vortex methods have been used in the simulation of high Reynolds number complex flows, especially when
fast transitions and strong distortion of the underlying vortical structure of the flow are expected. The
Lagrangian, self-adaptive nature of the calculations makes it possible to resolve strong gradients wherever
and whenever they arise, while maintaining a coarse resolution when uniform zones continue to exist. For this
reason, vortex methods have been particularly successful in resolving the evolution of shear layers. In cases
when the flow is driven by body forces, that is, when the vorticity is continuously generated by the interaction
between the density gradients and the pressure gradients, it is important that the vorticity source term is also
evaluated accurately. Since flow gradients are involved in computing the source terms, it is important to apply
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compatible schemes in simulating the flow dynamics and the evolution of scalar gradients. The method pre-
sented in this paper achieves this compatibility.

Solution of a number of buoyancy driven generic flows in three dimensions demonstrates the success of the
method in resolving the temperature gradients and the corresponding vorticity structures, and in particular
show its convergence. Complex vortical structures that arise in the early and late stages were reproduced.

The method shows sub quadratic convergence because the source terms integration is first-order. However,
this is not an inherent limitation and one can improve the convergence order by applying second-order inte-
gration for the source terms. Second-order interpolation kernels are also available for diffusion, and high
order splitting can be used. The method is also being used to simulating reacting flow, and results will be pub-
lished soon.
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Appendix A. Multi-purpose adaptive treecode

A.1. Problem definition

Lagrangian simulations using vorticity or gradients as particle weights require the solution of several dif-
ferential equations that model the convection and source terms in the original conservation equations, to
update the field. One after needs to compute the vortical velocity, ux, from the vorticity field, x. One also
needs to obtain the expansion velocity, ue, from the divergence field, e, generated by the volumetric expansion
of material elements due to, e.g., a chemical reaction. In the case of using gradients for the primitive variable,
e.g. in the transport element methods, there is also a need to recover the conserved scalar field, s (or h in the
main texts), from the information on its gradient, g. Additionally, the evolutions of the weights of vortex ele-
ments and/or transport elements rely on the information regarding the gradient of the velocity field. Thus, it is
necessary to compute $ux and $ue simultaneously from x and e directly.

In summary, the problem can be restated as follows. During each time step of the simulation, it is necessary
to invert one or many of the following equations:
x ¼ r� ux; ðA1:1Þ
e ¼ r � ue; ðA1:2Þ
g ¼ rs: ðA1:3Þ
That is, knowing x, e, and g, we need to calculate ux, ue, and their gradients, as well as s. x, e, and g are all
discretized into Lagrangian computational elements or particles:
xðx; tÞ �
XN

j¼1

WjðtÞfdðx� vjðtÞÞ ðvortex elementsÞ; ðA1:4Þ

eðx; tÞ �
XN

j¼1

EjðtÞfdðx� vjðtÞÞ ðdivergence elementsÞ; ðA1:5Þ

gðx; tÞ �
XN

j¼1

GjðtÞfdðx� vjðtÞÞ ðtransport elementsÞ; ðA1:6Þ
The weights Wj, Ej, and Gj correspond to the vorticity, divergence, and gradient assigned to each compu-
tational element, i.e., Wj = [xdV]j, Ej = [edV]j, and Gj = [gdV]j. vj is the location of the jth particle. fd is a
desingularized radially symmetric core function of radius d, given by fd(x) � d�3f(jxj/d). The function f

must be smooth and rapidly decaying at infinity. In this work, we use the low-order algebraic core
function [1]



f ðqÞ ¼ 3

4p
1

ð1þ q2Þ5=2
: ðA1:7Þ
In R3, the solution of (A1.1) is given by the Biot–Savart law,
uxðxÞ ¼ �
1

4p

Z
x� y

jx� yj3
� xðyÞdy: ðA1:8Þ
With (A1.4), (A1.8) can be rewritten as follows:
uxðxÞ ¼
XN

j¼1

Kdðxd
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the smallest leaf size, N0, which is predefined by the user, the process terminates and returns the tree
structure.

Once the tree is constructed, (A1.9), (A1.11)–(A1.14) are rewritten in the following form:
uxðxÞ ¼
X

c

XNc

j¼1

Kdðx; vjÞ �Wj; ðA1:15Þ

ruxðxÞ ¼
X

c

XNc

j¼1

rxKdðx; vjÞ �Wj; ðA1:16Þ

ueðxÞ ¼ �
X

c

XNc

j¼1

Kdðx; vjÞEj; ðA1:17Þ

rueðxÞ ¼ �
X

c

XNc

j¼1

rxKdðx; vjÞEj; ðA1:18Þ

sðxÞ ¼ �
X

c

XNc

j¼1

Kdðx; vjÞ �Gj; ðA1:19Þ
where c denotes a cluster containing particles. The particle–cluster interactions are evaluated either by using
Taylor approximation or by direct summation, following the same strategy described in [33]. The procedure
uses a complex combination of theoretical error estimates and empirical computational time estimates to
determine the best order of the approximation and the best size of the cluster. A parallel implementation
of the same algorithm that uses k-means clustering to distribute the load among a number of processors is
documented in [34].

A.3. Taylor approximation

To derive a Taylor approximation for a particle–cluster interaction, Kd(x,y) in (A1.15) is expanded in a
Taylor series with respect to y, around the cluster center yc, such that
XNc

j¼1

Kdðx; vÞ �Wj ¼
XNc

j¼1

Kdðx; yc þ ðvj � ycÞÞ �Wj

¼
XNc

j¼1

X
k

1

K!
Dk

y Kdðx; ycÞðvj � ycÞ
k �Wj

¼
X

k

akðx; ycÞ �mx
k ðcÞ: ðA1:20Þ
Here, ak(x,yc) is the kth Taylor coefficient of Kd(x,y) at y = yc:
akðx; ycÞ ¼
1

k!
Dk

yKdðx; ycÞ; ðA1:21Þ
and mx
k ðcÞ is the kth moment of the vortex elements in cluster c about its center yc:
mx
k ðcÞ ¼

XNc

j¼1

ðvj � ycÞ
k
Wj: ðA1:22Þ
k = (k1,k2,k3) is an integer multi-index with ki P 0, and k! = k1!k2!k3!. For x 2 R3, xk is interpreted in a stan-
dard way, i.e., xk1

1 xk2
2 xk3

3 2 R. The infinite series in (A1.20) is approximated by a finite sum,
XNc

j¼1

Kdðx; vjÞ �Wj �
X
jkj6p

akðx; ycÞ �mx
k ðcÞ; ðA1:23Þ



9086 F. Schlegel et al. / Journal of Computational Physics 227 (2008) 9063–9090
where jkj = k1 + k2 + k3. The order of the approximation, p, must be chosen so that the error due to the trun-
cation remains small.

For the particle–cluster interactions in (A1.16), a similar series with different set of Taylor coefficients is
developed.
XNc

j¼1

rxKdðx; vjÞ �Wj ¼
XNc

j¼1

rxKdðx; yc þ ðvj � ycÞÞ �Wj

¼
XNc

j¼1

X
k

1

K!
Dk

yrxKdðx; ycÞðvj � ycÞ
k �Wj ¼

X
k

ckðx; ycÞ �mx
k ðcÞ; ðA1:24Þ
where ck(x, yc) is the kth Taylor coefficient of $xKd(x, y) at y = yc:
ckðx; ycÞ ¼
1

k!
Dk

yrxKdðx; ycÞ; ðA1:25Þ
which yields a three-by-three matrix for each set of (x, yc). Again, the infinite sum is truncated into a finite one
up to an appropriate order p:
XNc

j¼1

rxKdðx; vjÞ �Wj �
X
jkj6p

ckðx; ycÞ �mx
k ðcÞ: ðA1:26Þ
To evaluate either (A1.23) or (A1.26), we need the Taylor coefficients, i.e., ak or ck. An efficient method to
obtain ak was proposed in [33]. The Rosenhead–Moore kernel (A1.10) is given by the gradient of the Plummer
potential:
Kdðx; yÞ ¼ �ry/dðx; yÞ; ðA1:27Þ

where
/dðx; yÞ ¼
1

4p
1

ðjx� yj2 þ d2Þ
1
2

: ðA1:28Þ
We set the kth Taylor coefficient of /d(x, y) at as y = yc as
bkðx; ycÞ ¼
1

k!
Dk

y/dðx; ycÞ: ðA1:29Þ
Then, ak is related to bk as follows [33]:
akðx; ycÞ ¼
1

k!
Dk

yKdðx; ycÞ ¼
1

k!
Dk

yð�ry/dðx; ycÞÞ ¼ �
1

k!
Dk

y

X3

i¼1

eiDei
y /dðx; ycÞ

 !
;

¼ � 1

k!

X3

i¼1

eiDkþei
y /dðx; ycÞ ¼ �

X3

i¼1

eiðki þ 1Þbkþeiðx; ycÞ; ðA1:30Þ
where ei is the ith Cartesian-basis vector. Therefore, to compute ak, it is sufficient to obtain bk. The calculation
of bk is performed recursively to reduce the computational load, using the following formula [33]:
jkjR2bk � ð2jkj � 1Þ
X3

i¼1

ðx� yÞ � eibk�ei þ ðjkj � 1Þ
X3

i¼1

bk�2ei ¼ 0 ðA1:31Þ
for jkjP 1, where b0(x, y) = /d(x, y), bk(x, y) = 0 if any ki < 0, and R2 = jx � yj2 + d2.
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To utilize the same machinery, we develop a similar relation for ck here:
Fig. A
plotted
ckðx; ycÞ ¼
1

k!
Dk

yðrxKdðx; ycÞÞ ¼
1

k!
DK

y ðryry/dðx; ycÞÞ ¼
1

k!
Dk

y

X3

i¼1

eiDei
y

X3

j¼1

ejDej
y /dðx; ycÞ

¼ 1

k!

X3

i¼1

X3

j¼1

eiejDkþeiþej
y /dðx; ycÞ ¼

X3

i¼1

X3

j¼1

eiej
ðkþ ei þ ejÞ!

k!
bkþeiþejðx; ycÞ ðA1:32Þ
with
ðkþ ei þ ejÞ!
k!

¼
ðki þ 1Þðki þ 2Þ; for i ¼ j;

ðki þ 1Þðkj þ 1Þ; otherwise:

�
ðA1:33Þ
Therefore, just as ak, ck can be obtained from bk. The only difference is that we need to evaluate bk up to one
order higher than that required for ak. The additional cost of one more order does not matter much in most
calculations, since most of particle–cluster interactions are dealt with at relatively low orders, namely, p 6 6.
As clearly seen in (A1.32), ck is symmetric in its indices, i and j, and we thus evaluate only six components
instead of all the nine components separately.

A similar construction has been developed for the particle–cluster interactions in (A1.17)–(A1.19), that is
XNc

j¼1

Kdðx; vjÞEj �
X
jkj6p

akðx; ycÞme
kðcÞ; ðA1:34Þ

XNc

j¼1

rxKdðx; vjÞEj �
X
jkj6p

ckðx; ycÞme
kðcÞ; ðA1:35Þ
where
me
kðcÞ ¼

XNc

j¼1

ðvj � ycÞ
kEj; ðA1:36Þ
and
 XNc

j¼1

Kdðx; vjÞ �Gj �
X
jkj6p

akðx; ycÞ �mh
kðcÞ; ðA1:37Þ
.1. View of vortex element distribution at t = 4.8 s. Only element with jxi dVij 6 10�4 are plotted left, and all the elements are
right.
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where
Table
CPU t
10�3

Tolera

CPU t
Max r
Max t

Fig. A
mh
kðcÞ ¼

XNc

j¼1

ðvj � ycÞ
k
Gj; ðA1:38Þ
Since all of these relations only require the evaluation of the same coefficients, namely, ak and ck, the process
can be efficiently integrated in a single treecode.

A.4. Numerical example

Tests are performed to check the algorithm’s accuracy and efficiency. The velocity gradient field of colliding
vortex rings is computed with the multi-purpose treecode fast summation routine, and the result is compared
to the result of direct summation. Two separate rings are placed with an angle in the unbounded three-dimen-
sional space (Fig. A.1). The number of vortex elements is 163,521. The velocity gradient is computed on a
Cartesian grid with x/d 2 {�2.5; 2.5}, y/d 2 {�2.5; 0.5}, and z/d 2 {�2; 2}, where d is the initial radius of each
ring in the simulation. The grid contains 20,580 points. For test purposes, the algorithm is implemented in a
double precision serial code on a Pentium4 workstation.

Typically, the order of the Taylor approximation used in the treecode shows dependance on the treecode
tolerance parameter based on the potential [33]. Three different tolerance parameters are tried: e = 10�1, 10�2,
and 10�3. The norm of the gradient matrix A = [aij] is defined as kAk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i;j¼1a2

ij

q
. The relative error is the

maximum value over all grid points of the relative error. We also computed the maximum value over all points
of the gradient trace to check incompressibility. For three values of the accuracy parameter, e = 10�1, 10�2,
10�3, the trace of the velocity gradient matrix is about 10�16, which suggests the treecode indeed compute the
velocity gradient accurately. As observed in Table A.1, with the accuracy parameter e = 10�3, the relative
A.1
ime and error in the fast evaluation of velocity gradients as a function of the accuracy parameter (potential criterion) e = 10�1, 10�2,

nce parameter e Direct summation 10�1 10�2 10�3

ime (s) 755.89 20.17 25.96 41.87
elative error 3.65E�01 3.04E�02 2.50E�03
race value 7.21E�16 6.66E�16 5.55E�16

.2. Number of interactions with targets points in the treecode as a function of the order of expansions in Taylor approximation.
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error is about 0.25% and the CPU time is only 5.5% of the direct summation time. The ratio of computational
time is around 18–1. As expected, the error decreases linearly as the tolerance parameter is reduced.

Fig. A.2 shows the number of interactions at each order of approximation. The number of interactions is
the number of cells multiplied by the average of particles per cell at each order. For e = 10�3, most interactions
are evaluated at orders of p = {5,6,7}. The simulations presented in the main section of the paper were all
performed with e = 10�3. Our numerical experiments show that the velocity field itself is about an order-
of-magnitude more accurate than the gradient field. The evaluation of the gradients requires one or two more
coefficients in Taylor expansions, which may slightly reduce the speed-up. However, since the coefficients are
only computed once and used for both the calculations of the velocity and its gradients, the overall additional
computational cost is minimized.

References

[1] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, MA, 2002.
[2] G.H. Cottet, P.D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, London, 2000.
[3] A.F. Ghoniem, A.K. Oppenheim, Numerical-solution for the problem of flame propagation by the random element method, AIAA

Journal 22 (10) (1984) 1429–1435.
[4] A.F. Ghoniem, F.S. Sherman, Grid-free simulation of diffusion using random-walk methods, Journal of Computational Physics 61 (1)

(1985) 1–37.
[5] C.R. Anderson, A vortex method for flows with slight density variations, Journal of Computational Physics 61 (1985) 417.
[6] A.F. Ghoniem, G. Heidarinejad, A. Krishnan, Numerical-simulation of a thermally stratified shear-layer using the vortex element

method, Journal of Computational Physics 79 (1) (1988) 135–166.
[7] A. Krishnan, A.F. Ghoniem, Simulation of the rollup and mixing in Rayleigh Taylor flow using the vortex/transport element method,

Journal of Computational Physics 99 (1992) 1–27.
[8] M.C. Soteriou, A.F. Ghoniem, On the application of the infinite reaction rate model in the simulation of the dynamics of exothermic

mixing layers, Combustion Science and Technology 105 (4–6) (1995) 377–397.
[9] M.C. Soteriou, A.F. Ghoniem, On the effects of the inlet boundary condition on the mixing and burning in reacting shear flows,

Combustion and Flame 112 (3) (1998) 404–417.
[10] M.C. Soteriou, Y. Dong, B.M. Cetegen, Lagrangian simulation of the unsteady near field dynamics of planar buoyant plumes,

Physics of Fluids 14 (9) (2002) 3118–3140.
[11] O.M. Knio, A.F. Ghoniem, 3-Dimensional vortex simulation of rollup and entrainment in a shear-layer, Journal of Computational

Physics 97 (1) (1991) 172–223.
[12] O.M. Knio, A.F. Ghoniem, The 3-dimensional structure of periodic vorticity layers under nonsymmetrical conditions, Journal of

Fluid Mechanics 243 (1992) 353–392.
[13] D. Wee, A.F. Ghoniem, Modified interpolation kernels for treating diffusion and remeshing in vortex methods, Journal of

Computational Physics 213 (2006) 263–293.
[14] S. Stanaway, B. Cantwell, P. Spalart, A numerical study of viscous vortex rings using a spectral method, TM 101004, NASA, 1988 SK

Stanaway.
[15] Y.M. Marzouk, D. Wee, A.F. Ghoniem, Simulations of high Reynolds number transverse jets and analysis of the underlying vortical

structures, in: 43rd AIAA Aerospace Sciences Meeting; Reno, NV, 10–14 January, 2005.
[16] G.S. Wickelmans, A. Leonard, Contributions to vortex particles methods for 3-dimensional incompressible unsteady flows, Journal of

Computational Physics 109 (1993) 247.
[17] R.S. Scorer, Experiments on convection of isolated masses of buoyant fluid, Journal of Fluid Mechanics 2 (1957) 583.
[18] R.S. Scorer, Natural Aerodynamics, Pergamon Press, London, 1958.
[19] C.P. Wang, Motion of an isolated buoyant thermal, Physics of Fluids 14 (3) (1971) 1643.
[20] S. Lin, L. Tsang, C.P. Wang, Temperature field structure in strongly heated buoyant thermals, Physics of Fluids 15 (12) (1972) 2118.
[21] J.S. Turner, Buoyant vortex rings, Proceedings of Royal Society of London, Series A 239 (1957) 61.
[22] J.S. Turner, Buoyancy Effects in Fluids, Cambridge University Press, Cambridge, 1973.
[23] M.P. Escudier, T. Maxworthy, On the motion of turbulent thermals, Journal of Fluid Mechanics 61 (1973) 541–552.
[24] D.L. Marcus, J.B. Bell, The structure and evolution of the vorticity and temperature fields in thermals, Theoretical and

Computational Fluid Dynamics 3 (1992) 327–344.
[25] G.R. Baker, D.I. Meiron, S.A. Orszag, Vortex simulations of the Rayleigh–Taylor instability, Physics of Fluids 23 (8) (1980) 1485.
[26] R.M. Kerr, Simulation of Rayleigh–Taylor flows using vortex blobs, Journal of Computational Physics 76 (1988) 48.
[27] G. Tryggvason, Numerical simulations of the Rayleigh–Taylor instability, Journal of Computational Physics 75 (1988) 253.
[28] J.A. Zufiria, Vortex-in-cell simulation of bubble competition in Rayleigh–Taylor instability, Physics of Fluids 31 (11) (1988) 3199.
[29] J.A. Zufiria, Linear analysis of the vortex-in-cell algorithm applied to Rayleigh–Taylor instability, Journal of Computational Physics

80 (1989) 387.
[30] S.G. Brecht, J.R. Ferrante, Vortex-in-cell calculations in three dimensions, Computer Physics and Communication 58 (1990) 25.
[31] S.H. Brecht, J.R. Ferrante, Vortex-in-cell simulation of buoyant bubbles in three dimensions, Physics of Fluids A 1 (7) (1989) 1166.



9090 F. Schlegel et al. / Journal of Computational Physics 227 (2008) 9063–9090
[32] J.H. Walther, P. Koumoutsakos, Three-dimensional vortex methods for particle-laden flows with two-way coupling, Journal of
Computational Physics 167 (2001) 39–71.

[33] K. Lindsay, R. Krasny, A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow, Journal of
Computational Physics 172 (2001) 879–907.

[34] Y.M. Marzouk, A.F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-
body simulations, Journal of Computational Physics 207 (2005) 493–528.


	A fast 3D particle method for the simulation of buoyant flow
	Introduction
	Governing equations
	Numerical algorithm
	Evolution of a vortex ring
	Buoyancy-driven flows
	Evolution of a thermal sphere
	Interactions of two thermal spheres
	Side-by-side interaction
	Two spheres with different sizes


	Conclusion
	Acknowledgment
	Multi-purpose adaptive treecode
	Problem definition
	Overview of the treecode
	Taylor approximation
	Numerical example

	References


